تقييمات الطلاب
( 5 من 5 )
١ تقييمات
فيديو شرح Machine Learning Tutorial Python - 6: Dummy Variables & One Hot Encoding ضمن كورس لغة الآلة شرح قناة codebasics، الفديو رقم 6 مجانى معتمد اونلاين
Machine learning models work very well for dataset having only numbers. But how do we handle text information in dataset? Simple approach is to use interger or label encoding but when categorical variables are nominal, using simple label encoding can be problematic. One hot encoding is the technique that can help in this situation. In this tutorial, we will use pandas get_dummies method to create dummy variables that allows us to perform one hot encoding on given dataset. Alternatively we can use sklearn.preprocessing OneHotEncoder as well to create dummy variables.
#MachineLearning #PythonMachineLearning #MachineLearningTutorial #Python #PythonTutorial #PythonTraining #MachineLearningCource #OneHotEncoding #sklearntutorials #scikitlearntutorials
Code in tutorial: https://github.com/codebasics/py/blob/master/ML/5_one_hot_encoding/one_hot_encoding.ipynb
Exercise csv file: https://github.com/codebasics/py/blob/master/ML/5_one_hot_encoding/Exercise/carprices.csv
Exercise solution: https://github.com/codebasics/py/blob/master/ML/5_one_hot_encoding/Exercise/exercise_one_hot_encoding.ipynb
Topics that are covered in this Video:
0:00 Introduction
0:47 How to handle text data in machine learning model?
1:38 Nominal vs Ordinal Variables
2:44 Theory (Explain one hot encoding using home prices in different townships)
3:39 Coding (Start)
3:51 Pandas get_dummies method
7:48 Create a model that uses dummy columns
12:45 Label Encoder
13:29 fit_transform() method
15:40 sklearn OneHotEncoder
19:59 Exercise (To predict prices of car based on car model, age, mileage)
Do you want to learn technology from me? Check https://codebasics.io/?utm_sourcedescription&utm_mediumyt&utm_campaigndescription&utm_iddescription for my affordable video courses.
Next Video:
Machine Learning Tutorial Python - 7: Training and Testing Data: https://www.youtube.com/watch?vfwY9Qv96DJY&listPLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw&index7
Populor Playlist:
Data Science Full Course: https://www.youtube.com/playlist?listPLeo1K3hjS3us_ELKYSj_Fth2tIEkdKXvV
Data Science Project: https://www.youtube.com/watch?vrdfbcdP75KI&listPLeo1K3hjS3uu7clOTtwsp94PcHbzqpAdg
Machine learning tutorials: https://www.youtube.com/watch?vgmvvaobm7eQ&listPLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw
Pandas: https://www.youtube.com/watch?vCmorAWRsCAw&listPLeo1K3hjS3uuASpe-1LjfG5f14Bnozjwy
matplotlib: https://www.youtube.com/watch?vqqwf4Vuj8oM&listPLeo1K3hjS3uu4Lr8_kro2AqaO6CFYgKOl
Python: https://www.youtube.com/watch?veykoKxsYtow&listPLeo1K3hjS3uv5U-Lmlnucd7gqF-3ehIh0&index1
Jupyter Notebook: https://www.youtube.com/watch?vq_BzsPxwLOE&listPLeo1K3hjS3uuZPwzACannnFSn9qHn8to8
To download csv and code for all tutorials: go to https://github.com/codebasics/py, click on a green button to clone or download the entire repository and then go to relevant folder to get access to that specific file.
Tools and Libraries:
Scikit learn tutorials
Sklearn tutorials
Machine learning with scikit learn tutorials
Machine learning with sklearn tutorials
My Website For Video Courses: https://codebasics.io/?utm_sourcedescription&utm_mediumyt&utm_campaigndescription&utm_iddescription
Need help building software or data analytics and AI solutions? My company https://www.atliq.com/ can help. Click on the Contact button on that website.
#️⃣ Social Media #️⃣
Discord: https://discord.gg/r42Kbuk
Dhaval's Personal Instagram: https://www.instagram.com/dhavalsays/
Codebasics Instagram: https://www.instagram.com/codebasicshub/
Facebook: https://www.facebook.com/codebasicshub
Twitter: https://twitter.com/codebasicshub
Linkedin (Personal): https://www.linkedin.com/in/dhavalsays/
Linkedin (Codebasics): https://www.linkedin.com/company/codebasics/
Patreon: https://www.patreon.com/codebasics?fan_landingtrue